

Welcome to MapSwipe Back-End’s documentation!

Getting Started:

	MapSwipe Back-End
	Resources

	Contributing Guidelines

	License

	Authors

	Acknowledgements

	Overview
	A typical MapSwipe workflow

	Deployment Diagram

	Data
	Projects

	Aggregated Results

	HOT Tasking Manager Geometries

	Users

	Development Setup
	Installation

	Further Information
	Logging

	Firebase Functions

	Database Backup

	Testing
	Tests

Project Types:

	Project Types and Data Model
	MapSwipe’s Crowdsourcing Approach

	Data Model

	Build Area
	Project Drafts

	Projects

	Groups

	Tasks

	Results

	Change Detection
	Project Draft

	Project structure

	Group structure

	Task structure

	Result Structure

	Footprint
	Project Draft

	Project structure

	Group structure

	Task structure

	Result Structure

Usage:

	For MapSwipe Managers
	Setting up a new MapSwipe mission

	Troubleshooting

	Becoming a project manager

	Command Line Interface

	Use Cases
	How to identify “good” mapping tasks for MapSwipe

	Building Mapping

	Landcover Mapping - e.g. Mangroves

	OpenStreetMap Data Validation

	Analysis of the Mapswipe Tiles – how ‘square’ are they?
	Summary

Deployment:

	Configuration Reference
	MapSwipe Workers

	Postgres

	Manager Dashboard

	Community Dashboard

	Django API

	NGINX

	Installation
	Firebase Setup

	Postgres Setup

	MapSwipe Workers

	Manager Dashboard

	API

	Django API

	Lets Encrypt and NGINX

	Debugging
	Logs - MapSwipe Workers

	Logs - Django web server.

	Common Errors

	Useful Docker Commands

	Backup
	Backup setup

	Restore setup

MapSwipe Back-End

MapSwipe [http://mapswipe.org/] is a mobile app that lets you search satellite imagery to help put the world’s most vulnerable people on the map. If you are new to MapSwipe it might be good to have a look at the FAQs [http://mapswipe.org/faq.html] first.

The MapSwipe Back-End consists of a number of components:

	Firebase Project

	MapSwipe Workers

	Postgres Database

	Manager Dashboard

	API

Please refer to the documentation for more information: https://mapswipe-workers.readthedocs.io/

Resources

	MapSwipe Back-End: https://github.com/mapswipe/python-mapswipe-workers

	MapSwipe App https://github.com/mapswipe/mapswipe

	MapSwipe Website: https://mapswipe.org

	MapSwipe OSM-Wiki: https://wiki.openstreetmap.org/wiki/MapSwipe

Contributing Guidelines

Feature Branch

To contribute to the MapSwipe back-end please create dedicated feature branches based on the dev branch. After the changes create a Pull Request of the feature branch into the dev branch on GitHub:

git checkout dev
git checkout -b featureA
Hack away ...
git commit -am 'Describe changes.'
git push -u origin featureA
Create a Pull Request from feature branch into the dev branch on GitHub.

Note: If a bug in production (master branch) needs fixing before a new versions of MapSwipe Workers gets released (merging dev into master branch), a hotfix branch should be created. In the hotfix branch the bug should be fixed and then merged with the master branch (and also dev).

Style Guide

This project uses black [https://github.com/psf/black] and flake8 [https://gitlab.com/pycqa/flake8] to achieve a unified style.

Use pre-commit [https://pre-commit.com/] to run black and flake8 prior to any git commit. pre-commit, black and flake8 should already be installed in your virtual environment since they are listed in requirements.txt. To setup pre-commit simply run:

pre-commit install

From now on black and flake8 should run automatically whenever git commit is executed.

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details

Authors

	Benjamin Herfort - HeiGIT - Hagellach37 [https://github.com/Hagellach37]

	Marcel Reinmuth - HeiGIT - maze2point0 [https://github.com/maze2point0]

	Matthias Schaub - HeiGIT - Matthias-Schaub [https://github.com/Matthias-Schaub]

See also the list of contributors who participated in this project.

Acknowledgements

	Humanitarian organizations can’t help people if they can’t find them.

Overview

A typical MapSwipe workflow

	Project managers upload information about their projects (e.g. area of interest, objects to look for) to firebase realtime database using the manager dashboard.

	The mapswipe workers initialize newly uploaded projects and create the project related data (e.g. groups and tasks) in firebase realtime database and postgres database.

	Project managers “activate” their projects in the manager dashboard.

	The users of the MapSwipe app contribute to the newly generated projects and submit their results to firebase realtime database. The firebase rules ensure, that app users can only change pre-defined parts of the firebase realtime database.

	Once new results are submitted, the firebase functions generate real-time statistics and update the progress of groups, compute project level statistics and user statistics in the firebase realtime database.

	All results are transferred to the postgres database by the mapswipe workers on defined basis (e.g. every 10 minutes). The postgres database holds all MapSwipe results for long term storage. Once results are transferred to the postgres database, they will be deleted in firebase realtime database by the mapswipe workers.

	Based on the data in the postgres database the mapswipe workers generate aggregated data and statistics (e.g. as csv files). This data is served by the api, which uses a simple nginx web server.

Deployment Diagram

[image: Deployment Diagram]

Relations

Mapswipe Client (App) - Realtime Database

	Mapswipe Client is requesting some projects, data of a specific users.userId. In case of a project selection a group (groups.projectId.groupId) and associated tasks (tasks.projectId.groupsId) will be requested

	Mapswipe Client will only write to Firebase Realtime Database in case of result generation.

	Mapswipe Client is writing to results.projectId.groupId.userId1. in form of timestamp and resultCount attributes when and how many results were generated.

	The result itself will be written to results.projectId.groupId.userId1.taskId1.result.

Manager Dashboard - Realtime Database

	Using the Manager Dashboard user can submitt new project drafts to Firebase (project_drafts.projectDraftId.)

Community Dashboard - Aggregated Cached data from Database

	React based static server which uses Django webserver to show overall mapswipe aggregated contribution data.

Mapswipe Workers - Realtime Database

	projectCreation:

	requests projectDrafts from Realtime Database

	writes to projects.projectId, groups.projectId and tasks.projectId

	tansfer_results - Realtime Database

	requests results from Realtime Database

	deletes results from Realtime Database

MapSwipe Workers - Postgres Database

	projectCreation - Postgres

	writes projectDraft, project, groups and tasks to Postgres

	tansfer_results - Postgres

	writes results to Postgres

Django - Stats webserver

	aggregateStatData:

	requires user contribution related to user_group and project data from Postgres Database

Data

Swiping is just the beginning – MapSwipe data is created by our users and accessible to the entire community. Through the MapSwipe website [https://mapswipe.org/data.html] you can see where we’ve mapped, which organizations are requesting data, and how many individuals contribute to our impact. When using MapSwipe data, all you have to do is credit the MapSwipe contributors. Here you find a more detailed description of the data available.

Projects

Files:

	projects.csv [https://apps.mapswipe.org/api/projects/projects.csv]

	projects_geom.geojson [https://apps.mapswipe.org/api/projects/projects_geom.geojson]

	projects_centroid.geojson [https://apps.mapswipe.org/api/projects/projects_centroid.geojson]

	Name
	Type
	Description

	idx
	integer
	-

	project_id
	string
	The ID of the project used in Firebase.

	name
	string
	The name of the project as displayed in the app. For newer projects this will be a composition of project topic, project region and project number.

	project_details
	string
	The project description. This is displayed in the app on the project page.

	look_for
	string
	What should the users look for (e.g. buildings, cars, trees)?

	project_type
	integer
	The type of the project. 1=BuildArea, 2=Footprint, 3=ChangeDetection, 4=Completeness

	tile_server_names
	string
	The names of the satellite imagery providers used for this project. Some projects, e.g. Change Detection Type projects, have multiple tile server names.

	status
	string
	The status of the project defines if the project is visible in the app. There are the following values: active, inactive, finished, archived. Archived projects can not be set to active again.

	area_sqkm
	float
	The size of the project area in square kilometers.

	geom
	string
	The geometry of the project region as WKT geometry.

	centroid
	string
	The centroid of the project geometry as WKT geometry.

	progress
	float
	The mapping progress of the project. 1.0=completed.

	number_of_users
	integer
	The number of distinct users who contributed to this project.

	number_of_results
	integer
	The total number of results for all tasks.

	number_of_results_progress
	integer
	The number of results that are taken into account for the progress calculation. If a tasks has been mapped more often than required, usually 3-times, the additional results are not considered for the progress calculation.

	day
	string
	The date when the project information was updated the last time.

Aggregated Results

This gives you the unfiltered MapSwipe results. This is most suited if you want to apply some custom data processing with the MapSwipe data, e.g. select only specific tasks for machine learning. If you want to use MapSwipe data in the Tasking Manager you might look for the data described below.

Files:

	aggregated_results_{project_id}.csv, e.g. agg_results_-M56eeMCZ5VeOHjJN4Bx.csv [https://apps.mapswipe.org/api/agg_results/agg_results_-M56eeMCZ5VeOHjJN4Bx.csv]

	aggregated_results_{project_id}.geojson, e.g. agg_results_-M56eeMCZ5VeOHjJN4Bx.geojson [https://apps.mapswipe.org/api/agg_results/agg_results_-M56eeMCZ5VeOHjJN4Bx.geojson]

	Name
	Type
	Description

	idx
	integer
	-

	task_id
	string
	The ID of the task, for BuildArea projects this is a composition of TileZ-TileX-TileY

	0_count
	integer
	The number of users who marked this task as 0, e.g. "no building" for BuildArea Project Type.

	1_count
	integer
	The number of users who marked this task as 1, e.g. "building" for BuildArea Project Type.

	2_count
	integer
	The number of users who marked this task as 2, e.g. "maybe" for BuildArea Project Type.

	3_count
	integer
	The number of users who marked this task as 3, e.g. "bad imagery" for BuildArea Project Type.

	total_count
	integer
	The total number of users who mapped this task.

	0_share
	float
	0_count divived by total_count. This gives you the share of all users who marked as 0.

	1_share
	float
	1_count divived by total_count. This gives you the share of all users who marked as 1.

	2_share
	float
	2_count divived by total_count. This gives you the share of all users who marked as 2.

	3_share
	float
	3_count divived by total_count. This gives you the share of all users who marked as 3.

	agreement
	float
	This is defined as Scott's Pi and gives you an understanding of inter-rater reliability. The value is 1.0 if all users agree, e.g. all users classify as "building". If users disagree this value will be lower.

	geom
	string
	The geometry of this task as WKT geometry.

Additionally, project type specific data can be found here. E.g. footprint projects which were created based on OSM data, will have data describing the original OSM object included.

HOT Tasking Manager Geometries

This gives you filtered MapSwipe data ready to be imported to the HOT Tasking Manager.
Currently, the geometries in this dataset consist of maximum 15 MapSwipe Tasks, where at least 35% of all users indicated the presence of a building by classifying as “yes” or “maybe”.

Files:

	hot_tm_{project_id}.geojson, e.g. hot_tm_-M56eeMCZ5VeOHjJN4Bx.geojson [https://apps.mapswipe.org/api/hot_tm/hot_tm_-M56eeMCZ5VeOHjJN4Bx.geojson]

	Name
	Type
	Description

	group_id
	integer
	A ID for the geometry. It has no connection to the MapSwipe data model.

	geometry
	geometry
	A polygon geometry representing the selected MapSwipe tasks. In our GIS workflow we further aggregate and simplify the geometry, hence they kind of look like easter eggs.

 Development Setup

Development Setup

In this document some tips and workflows for development are loosely collected.
Those are independent of the production setup using Docker-Compose.
A working Firebase Project (Including Firebase Functions and Database Rules) is presupposed.
Get in touch with the MapSwipe team (e.g. in Slack) to get access to an existing Firebase Instance for development purposes.

Check list:

	Github: Clone repo from GitHub.

	Requirements: Install GDAL/OGR and GDAL for Python on your machine.

	Configuration: Set environment variables and get a Service Account Key File.

	Database: Set up local Postgres database using Docker.

	Python-Package: Install MapSwipe Workers Python package.

	Run MapSwipe Workers.

Installation

Clone from GitHub

… and switch to development branch.

git clone https://github.com/mapswipe/python-mapswipe-workers.git
cd python-mapswipe-workers
git checkout dev

Requirements

MapSwipe Workers requires GDAL/OGR (gdal-bin) and GDAL for Python (libgdal-dev, python-gdal) to be installed [https://mothergeo-py.readthedocs.io/en/latest/development/how-to/gdal-ubuntu-pkg.html].
Furthermore, we rely on Docker to set up Postgres.

Configuration

All configurations values are stored in environment variables. Please refer to the documentation on Configuration for further details.

Service Account Key

The MapSwipe Workers requires a Service Account Key (serviceAccountKey.json) to access Firebase database.
Request yours from the MapSwipe working group.

The path to the Service Account Key is defined in the GOOGLE_APPLICATION_CREDENTIALS environment variable.

You could also set up your own Firebase instance. However, this is not recommended.
If you still want to do it, get your Service Account Key from Firebase from Google Cloud Service Accounts [https://console.cloud.google.com/iam-admin/serviceaccounts].

Directories

MapSwipe Workers needs access to a data directory for logs and data for the API:

To create this directories run:

mkdir --parents ~/.local/share/mapswipe_workers

Note: XDG Base Directory Specification is respected

Database

Setup a local Postgres instance for MapSwipe Workers using the Dockerfile provided for development purposes (postgres/Dockerfile-dev).
The Dockerfile for production (postgres/Dockerfile) does need additional setup for build-in backup to Google Cloud Storage, which is not needed for local development. That is why a simplified Dockerfile for development is provided.
Make sure that the specified port is not in use already. If so, adjust the port (also in the .env file).

docker build -t mapswipe_postgres -f ./postgres/Dockerfile-dev ./postgres
docker run -d -p 5432:5432 --name mapswipe_postgres -e POSTGRES_DB="$POSTGRES_DB" -e POSTGRES_USER="$POSTGRES_USER" -e POSTGRES_PASSWORD="$POSTGRES_PASSWORD" mapswipe_postgres

Or set up Postgres using the initdb.sql file in the postgres/ folder.

Mapswipe-Workers Python Package

	Export environment variables to current shell.

	Create a Python virtual environment with system-site-packages option enabled to get access to GDAL/OGR Python packages

	Activate the virtual environment.

	Install MapSwipe Workers using pip.

	Run it.

export $(cat .env | xargs)
cd mapswipe_workers
python -m venv --system-site-packages venv
source venv/bin/activate
pip install --editable mapswipe_workers/
mapswipe_workers --help

Yeah! If you reached this point, you are ready to get into coding. Below you find some more information on Logging, Firebase Functions and Database Backup. However, you don’t need this to get started for now.

Further Information

Logging

Mapswipe workers logs are generated using the Python logging module of the standard library (See Official docs [https://docs.python.org/3/library/logging.html] or this Tutorial [https://realpython.com/python-logging/#the-logging-module].
To use the logger object import it from the definitions module:

from mapswipe_workers.definitions import logger
logger.info('information messages')
logger.waring('warning messages')

Include stack trace in the log
try:
 do_something()
except Exception:
 logger.exception('Additional information.')

Default logging level is Info. To change the logging level edit the logging configuration which is found in the module definitions.py.
Logs are written to STDOUT and ~/.local/share/mapswipe_workers/mapswipe_workers.log.

Per default logging of third-party packages is disabled. To change this edit the definition module (mapswipe_workers/defintions.py).
Set the disable_existing_loggers parameter of the logging.config.fileConfig() function to False.

Firebase Functions

Firebase functions are used to increment/decrement or calculate various attribute values which are used by the MapSwipe App. This includes:

	project.progress

	project.numberOfTasks

	project.resultCount

	project.contributorCount

	group.progress

	group.finishedCount

	group.requiredCount

	user.projectContributionCount

	user.groupContribtionCount

	user.taskContributionCount

	user.timeSpentMapping

	user.contibutions{.projectId.groupId.{timestamp, startTime, endTime}}

Those functions will be directly or indirectly triggered by incoming results from the MapSwipe App.

By using Firebase functions those attributes can be calculated in real-time and be accessed by users immediately.
The use of those functions also reduces the data-transfer between the Firebase Realtime Database and MapSwipe Workers.

On how to setup the development environment and how to deploy functions to the Firebase instance please refer to the official Guide on Cloud Function for Firebase [https://firebase.google.com/docs/functions/get-started].
For more information refer to the official Reference on Cloud Function for Firebase [https://firebase.google.com/docs/reference/functions/].
For example function take a look at this GitHub repository [https://github.com/firebase/functions-samples].

OSM OAuth 2

Firebase functions are also used to allow users to login to MapSwipe with their OpenStreetMap account. Refer to the notes in the app repository [https://github.com/mapswipe/mapswipe/blob/master/docs/osm_login.md] for more information.

Database Backup

Firebase

Manual Backup

	curl https://

 Testing

Testing

Tests

	run tests locally during development

python -m unittest discover --verbose --start-directory mapswipe_workers/tests/unittests/
python -m unittest discover --verbose --start-directory mapswipe_workers/tests/integration/

 Project Types and Data Model

Project Types and Data Model

MapSwipe’s Crowdsourcing Approach

The MapSwipe crowdsourcing workflow is designed following an approach already presented by Albuquerque et al. (2016) [http://www.mdpi.com/2072-4292/8/10/859]. The main ideas about MapSwipe’s crowdsourcing approach (and many other crowdsourcing tasks) lies in

	Defining the mapping challenge by posing a simple question (e.g. “Which areas are inhabited in South Kivu?”)

	Dividing the overall challenge into many smaller manageable components (e.g. groups and tasks based on satellite imagery tiles)

	Distributing groups and tasks to many users redundantly (e.g. every area gets mapped by at least three different users)

	Aggregating all responses (results) per task from different users to reach a final solution (e.g. by choosing the majority vote)

The MapSwipe back end currently supports 3 project types. Each project type formulates a specific kind of mapping challenge.

	Name
	ID
	Description
	Screenshot

	BuildArea
	1
	A 6 squares layout is used for this project type. By tapping you can classify a tile of satellite imagery as yes, maybe or bad_imagery. Project managers can define which objects to look for, e.g. "buildings". Furthermore, they can specify the tile server of the background satellite imagery, e.g. "bing" or a custom tile server.
	

 Build Area

Build Area

[image: Build Area]

Project Drafts

To initialize a Build Area Project as a Project Manager you only need to upload a bounding polygon as well as fill in some information about your mission.
Details on the basic information you need to fill in to describe you mission can be found on the main project type site.

{
 "createdBy": "TestCreator",
 "geometry": {
 "type": "FeatureCollection",
 "features": [{
 "type": "Feature",
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [34.975833892822266, -15.899098066386088],
 [35.089302062988274, -15.899098066386088],
 [35.089302062988274, -15.820002241903946],
 [34.975833892822266, -15.820002241903946],
 [34.975833892822266, -15.899098066386088]
]
]
 },
 "properties": {}
 }]
 },
 "image": "",
 "lookFor": "buildings",
 "name": "test - Malawi (1)\ntest",
 "projectDetails": "This is a test project",
 "verificationNumber": 3,
 "groupSize": 120,
 "tileServer": {
 "name": "bing",
 "credits": "© 2019 Microsoft Corporation, Earthstar Geographics SIO"
 },
 "projectType": 1
}

Projects

Below you can find an example for a created Build Area project in firebase.

{
 "contributorCount": 1,
 "created": "2021-12-23T13:47:27.346088Z",
 "createdBy": "X0zTSyvY0khDfRwc99aQfIjTEPK2",
 "groupMaxSize": 0,
 "groupSize": 25,
 "image": "https://firebasestorage.googleapis.com/v0/b/dev-mapswipe.appspot.com/o/projectImages%2Fbuildarea.png?alt=media&token=07505c0e-0f80-454c-b446-9b82a73d9d3e",
 "isFeatured": false,
 "lookFor": "Buildings",
 "name": "Build Area with Bing Imagery Z18 - Kenya (1)\nMapSwipe Devs",
 "progress": 0,
 "projectDetails": "This is a \"normal\" Build Area project. The project uses Bing Imagery at zoom level 18",
 "projectId": "-MrbXgHx8YJDt6cTIyGA",
 "projectNumber": "1",
 "projectRegion": "Kenya",
 "projectTopic": "Build Area with Bing Imagery Z18",
 "projectType": 1,
 "requestingOrganisation": "MapSwipe Devs",
 "requiredResults": 148158,
 "resultCount": 0,
 "status": "active",
 "tileServer": {
 "apiKey": "",
 "credits": "imagery credits of project",
 "name": "bing",
 "url": "https://ecn.t0.tiles.virtualearth.net/tiles/a{quad_key}.jpeg?g=1&token={key}"
 },
 "tutorialId": "tutorial_-MnNaUEShyefFtMG6_5-",
 "verificationNumber": 3,
 "zoomLevel": 18
}

Groups

The grouping algorithm uses the extent of a project as an input and generates chunks of tasks lying next to each other.
Each group has a height of three tasks and a width of approximately 40 tasks.

	Parameter
	Description

	Geometry
	The Build Area groups save the bounding box coordinates in fields labeled xMax, xMin, yMax and yMin.

{
 "finishedCount" : 0,
 "groupId" : "g101",
 "numberOfTasks" : 54,
 "progress" : 0,
 "projectId" : "-MrbXgHx8YJDt6cTIyGA",
 "requiredCount" : 3,
 "xMax" : "160239",
 "xMin" : "160222",
 "yMax" : "129763",
 "yMin" : "129761"
}

Tasks

Tasks are only saved for tutorials, since their spatial inforamtion can be derived from the spatial extent of the corresponding group.

	Parameter
	Description

	Project Type Specific Information
	

	Tile X
	The x coordinate characterises the longitudinal position of the tile in the overall tile map system taken the zoom level into account. The x coordinates increase from west to east starting at a longitude of -180 degrees.

	Tile Y
	The y coordinate characterises the latitudinal position of the tile in the overall tile map system taken the zoom level into account. The latitude is clipped to range from circa -85 to 85 degrees. The y coordinates increase from north to south starting at a latitude of around 85 degrees.

	Geometry
	Each task has a polygon geometry, which can be generated by its x, y and z coordinates. At the equator the task geometry is a square with an edge length of around 150 metres covering circa 0.0225 square kilometres. Due to the web Mercator projector the task geometry will be clinched with increasing distance to the equator. At the same time the area per task will decrease.

	Tile URL
	The tile URL points to the specific tile image described by the x, y, and z coordinates. Usually, the image has a resolution of 256 x 256 pixels. However, some providers also generate image tiles with higher resolution (e.g. 512 x 512 pixels).

Below is an example json for a tutorial project, as can be seen on the three extra attributes screen, referenceAnswer and taskID_real.

{
 "groupId" : 101,
 "projectId" : "tutorial_-MGwrwsP9cTYf6c_Nbg3",
 "referenceAnswer" : 0,
 "screen" : 1,
 "taskId" : "18-100-131072",
 "taskId_real" : "18-65040-120545",
 "taskX" : 100,
 "taskY" : 131072,
 "url" : "https://ecn.t0.tiles.virtualearth.net/tiles/a023313133022210002.jpeg?g=7505&mkt=en-US"
}

Results

Results contain information on the user classifications. However, only “Yes” (1), “Maybe” (2) and “Bad Imagery” (3) classifications are stored as results.
Whenever users indicate “No building” by just swiping to the next set of tasks, no data entry is created.
“No Building” classifications can only be modelled retrospectively for groups where a user also submitted at least one “Yes”, “Maybe” or “Bad Imagery” classification.

 Change Detection

Change Detection

Project Draft

The Change detection project type is initialized in the same way as the standard buildArea project.

Project Draft example for a Change Detection project:

{
 "createdBy": "Sample Manager",
 "geometry": {"type":"FeatureCollection","features":[{"type":"Feature","properties":{},"geometry":{"type":"Polygon","coordinates":[[[-175.21785736083984,-21.122295110595505],[-175.2367401123047,-21.148873980682744],[-175.21339416503906,-21.152716314425852],[-175.19931793212888,-21.15239612375494],[-175.19588470458984,-21.147913381670975],[-175.1931381225586,-21.136385707660683],[-175.1934814453125,-21.129660817021904],[-175.21785736083984,-21.122295110595505]]]}}]},
 "image": "http://www.redcrosseth.org/media/k2/items/cache/5a05a447acfdf6fcc40548cc4c1cea8d_L.jpg",
 "lookFor": "DESTROYED BUILDINGS",
 "name": "Change Detection Sample Project",
 "projectDetails": "This project uses Bing as the tile server and zoom level 18 for the before image. For after we use imagery from open aerial map.",
 "verificationNumber": 3,
 "groupSize": 15,
 "projectType": 3,
 "tileServerA": {
 "name": "bing",
 "apiKeyRequired": true,
 "caption": "Before",
 "credits": "© 2019 Microsoft Corporation, Earthstar Geographics SIO"
 },
 "tileServerB": {
 "name": "custom",
 "url": "https://tiles.openaerialmap.org/5b3541802b6a08001185f8b1/0/5b3541802b6a08001185f8b2/{z}/{x}/{y}.png",
 "apiKeyRequired": false,
 "apiKey": "",
 "caption": "After",
 "date": "2018-02-21",
 "credits": "© OpenAerialMap"
 }
}

Examples of other initialization options can be found in the mapswipe-backend repository at mapswipe_workers/tests/integration/fixtures/change_detection/project_drafts.json.

Project structure

Project Structure example for a project which was created via HOT Tasking Manager Project ID.

{
 "contributorCount" : 0,
 "created" : "2021-12-23T14:14:52.179930Z",
 "createdBy" : "X0zTSyvY0khDfRwc99aQfIjTEPK2",
 "groupMaxSize" : 0,
 "groupSize" : 25,
 "image" : "https://firebasestorage.googleapis.com/v0/b/dev-mapswipe.appspot.com/o/projectImages%2FEQ%2BEarthquake.png?alt=media&token=6e82ba52-8adb-4214-8f81-4b7030c00946",
 "isFeatured" : false,
 "lookFor" : "damaged buildings",
 "name" : "Earthquake - Experimental Damage Assessment - Les Cayes (Haiti) (1)\nSimon BA",
 "progress" : 0,
 "projectDetails" : "In attempt to provide a rapid damage assessment for the 7.2 magnitude earthquake on August 14, please slowly compare the images to determine if damage is visible in the post-event scene. This methodology is still being tested and should not replace traditional damage assessment methods. Imagery is provided through [Maxar's Open Data Programm](https://www.maxar.com/open-data) and hosted by [MapBox](https://www.mapbox.com/).",
 "projectId" : "-Mrbd5ArF4lb_GoYG2I5",
 "projectNumber" : "1",
 "projectRegion" : "Les Cayes (Haiti)",
 "projectTopic" : "Earthquake - Experimental Damage Assessment",
 "projectType" : 3,
 "requestingOrganisation" : "Simon BA",
 "requiredResults" : 3636,
 "resultCount" : 0,
 "status" : "inactive",
 "tileServer" : {
 "apiKey" : "",
 "credits" : "© 2019 Maxar",
 "name" : "maxar_premium",
 "url" : "https://services.digitalglobe.com/earthservice/tmsaccess/tms/1.0.0/DigitalGlobe%3AImageryTileService@EPSG%3A3857@jpg/{z}/{x}/{y}.jpg?connectId={key}"
 },
 "tileServerB" : {
 "credits" : "© Maxar, MapBox",
 "name" : "custom",
 "url" : "https://api.mapbox.com/v4/mapboxsatellite.haiti-post-2021/{z}/{x}/{y}.webp?sku=101Fw3jtBuWI5"
 },
 "tutorialId" : "tutorial_-MhJtd9ePFOw8Vs6xwZ2",
 "verificationNumber" : 3,
 "zoomLevel" : 19
}

Group structure

	Parameter
	Description

	Geometry
	The Change Detection groups save the bounding box coordinates in fields labeled xMax, xMin, yMax and yMin.

{
 "finishedCount" : 0,
 "groupId" : "g101",
 "numberOfTasks" : 24,
 "progress" : 0,
 "projectId" : "-Mrbd5ArF4lb_GoYG2I5",
 "requiredCount" : 3,
 "xMax" : "154722",
 "xMin" : "154715",
 "yMax" : "235151",
 "yMin" : "235149"
}

Task structure

	Parameter
	Description

	Project Type Specific Information
	

	Task X
	The x coordinate characterises the longitudinal position of the tile in the overall tile map system taken the zoom level into account. The x coordinates increase from west to east starting at a longitude of -180 degrees.

	Task Y
	The y coordinate characterises the latitudinal position of the tile in the overall tile map system taken the zoom level into account. The latitude is clipped to range from circa -85 to 85 degrees. The y coordinates increase from north to south starting at a latitude of around 85 degrees.

	Geometry
	Each task has a polygon geometry, which can be generated by its x, y and z coordinates. At the equator the task geometry is a square with an edge length of around 150 metres covering circa 0.0225 square kilometres. Due to the web Mercator projector the task geometry will be clinched with increasing distance to the equator. At the same time the area per task will decrease.

	URL
	Image for the tile at timestamp A. The tile URL points to the specific tile image described by the x, y, and z coordinates.

	URL 2
	Image for the tile after timestamp A. The tile URL points to the specific tile image described by the x, y, and z coordinates.

{
 "groupId" : "g101",
 "projectId" : "-Mrbd5ArF4lb_GoYG2I5",
 "taskId" : "19-154715-235149",
 "taskX" : "154715",
 "taskY" : "235149",
 "url" : "https://services.digitalglobe.com/earthservice/tmsaccess/tms/1.0.0/DigitalGlobe%3AImageryTileService@EPSG%3A3857@jpg/19/154715/289138.jpg",
 "urlB" : "https://api.mapbox.com/v4/mapboxsatellite.haiti-post-2021/19/154715/235149.webp?sku=101Fw3jtBuWI5"
}

Result Structure

Results contain information on the user classifications. However, only “Yes” (1), “Maybe” (2) and “Bad Imagery” (3) classifications are stored as results.
Whenever users indicate “No Change” by just swiping to the next task, no data entry is created.

 Footprint

Footprint

Project Draft

Footprint projects can be supplied with geometries in three seperate ways.

	by specifying a HOT Tasking Manager Project ID and an object filter [https://docs.ohsome.org/ohsome-api/v1/filter.html]

	by specifying an url to the data (e.g. an ohsomeAPI [https://docs.ohsome.org/ohsome-api/v1/] call)

	by uploading an aoi and an object filter [https://docs.ohsome.org/ohsome-api/v1/filter.html]

Project Draft example for a footprint project which was initialized with an aoi and a filter:

{
 "createdBy" : "Sample Admin",
 "filter" : "building=* and geometry:polygon",
 "geometry" : {
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "properties": {},
 "geometry": {
 "type": "Polygon",
 "coordinates": [[[9.18032169342041, 48.790552471542284],[9.187102317810059,48.790552471542284],[9.187102317810059,48.79407236257656],[9.18032169342041,48.79407236257656],[9.18032169342041,48.790552471542284]]]}
 }
]
 },
 "groupSize" : 25,
 "lookFor": "Buildings",
 "image": "http://www.fragosus.com/test/Javita.jpg",
 "projectDetails": "This is a template for a GeoJSON AOI project. We use Bing as the tile server.",
 "inputType" : "aoi_file",
 "name" : "Test Footprint GeoJSON AOI",
 "projectTopic" : "Test Footprint GeoJSON AOI",
 "projectType" : 2,
 "verificationNumber": 3,
 "tileServer" : {
 "credits" : "© 2019 Microsoft Corporation, Earthstar Geographics SIO",
 "name" : "bing",
 "url" : "",
 "wmtsLayerName" : ""
 }
}

Examples for the other initialization options can be found in the mapswipe-backend repository at mapswipe_workers/tests/integration/fixtures/footprint/projectDrafts.

Project structure

Project Structure example for a project which was created via HOT Tasking Manager Project ID.

{
 "TMId" : "11193",
 "contributorCount" : 1,
 "created" : "2021-12-10T18:05:26.090515Z",
 "createdBy" : "X0zTSyvY0khDfRwc99aQfIjTEPK2",
 "filter" : "building=* and geometry:polygon",
 "groupMaxSize" : 0,
 "groupSize" : 30,
 "image" : "https://firebasestorage.googleapis.com/v0/b/dev-mapswipe.appspot.com/o/projectImages%2Fimage.jpeg?alt=media",
 "inputType" : "TMId",
 "isFeatured" : false,
 "lookFor" : "Buildings",
 "name" : "OSM Building Validation - Indonesia (1)\nAmerican Red Cross",
 "progress" : 0,
 "projectDetails" : "The Red Cross Climate Centre, Indonesian Red Cross (Palang Merah Indonesia/PMI), IFRC, British Red Cross and Australian Red Cross are implementing a programme where the data contributed will be used by the Red Cross to assist in forecasting future disaster impacts, by knowing in advance what is likely to be impacted and its exposure and vulnerability. The information will help implementation of early action activities to take place before a disaster strikes, contributing to reduce risk, prepare for effective response and ultimately to strengthen community resilience.",
 "projectId" : "-Mq_IVluLteQRS75gWej",
 "projectNumber" : "1",
 "projectRegion" : "Indonesia",
 "projectTopic" : "OSM Building Validation",
 "projectType" : 2,
 "requestingOrganisation" : "American Red Cross",
 "requiredResults" : 286302,
 "resultCount" : 0,
 "status" : "private_active",
 "teamId" : "-Mq_EQlzqmYytCspuFSq",
 "tileServer" : {
 "apiKey" : "ca613e76-811f-46e7-9e1d-84f6795441c2",
 "credits" : "© 2019 Maxar",
 "name" : "maxar_premium",
 "url" : "https://services.digitalglobe.com/earthservice/tmsaccess/tms/1.0.0/DigitalGlobe%3AImageryTileService@EPSG%3A3857@jpg/{z}/{x}/{y}.jpg?connectId={key}"
 },
 "tutorialId" : "tutorial_-MO3ky5z--RY8PC1lONa",
 "verificationNumber" : 3
}

Group structure

The footprint groups follow the standard group structure.

{
 "finishedCount" : 0,
 "groupId" : "g100",
 "numberOfTasks" : 30,
 "progress" : 0,
 "projectId" : "-Mq_FxTdV2QJHsxQcvFk",
 "requiredCount" : 3
}

Task structure

	Parameter
	Description

	Project Type Specific Information
	

	GeoJSON
	Each task has a polygon geometry, which usually outlines a building or another object.

{
 "feature_id" : 0,
 "geojson" : {
 "coordinates" : [[[5.15910196973, 13.48686869581], [5.15937974751, 13.48686869581], [5.15937974751, 13.48742425137], [5.15910196973, 13.48742425137], [5.15910196973, 13.48686869581]]],
 "type" : "Polygon"
 },
 "id" : "13564_100_0",
 "properties": "feature_geometries, e.g. attributes from osm"
}

Result Structure

The Result for a footprint project are explicitly given via the “yes”, “no” and “not sure” buttons.

 For MapSwipe Managers

For MapSwipe Managers

Setting up a new MapSwipe mission

Any of the Missing Maps members can request a MapSwipe mission. If you want to add a new mission, but don’t know how to do it, it will be best to reach out to the MapSwipe community via Slack.

To set up a new mission you can create a project draft through the Manager Dashboard [https://dev.mapswipe.org/manager_dashboard/]. Sign in with your MapSwipe account. In order to create new projects you need dedicated project manager credentials. Reach out to the MapSwipe community if you don’t have these already. Once you’re signed in, you will see a screen similar to the one below.

[image: Manager Dashboard]
You can directly go to create New Project page from here, or you can navigate to the Projects page from the navbar at the top and then click on Add New Project button on the top right. You’ll be navigate to the New Project Page which will look like following.

[image: Project Import Form]
General points of attention:

	Verify if the project name is short and clear

	The minimum verification count is 3. The algorithm is calculated on that. Less persons looking at one square has implications on the quality of the MapSwipe data. The best results we have with a 5 person verification.

	Reread, correct and improve the description given through the request.

	Check if the image is the good format and if the size is not to big - max 1MB. The image will be show as a thumbnail for your mission.

	Tile server import, which imagery are you using is the question here. We only have legal permission to use Bing for now. For custom tile servers (e.g. from OpenAerial Map) check the permission.

	Check the (Bing) imagery available for the area, we learned that good imagery is key to keep a mission going. If the imagery is not good enough or covered by clouds adjust the area. You need to zoom in till level 18.

For BuildArea and ChangeDetection projects:

	MapSwipe can only process geographical areas up to 5,000km2. Check if the GeoJSON you received has this size. If not, you may need to split up the area into multiple pieces, and create more than one MapSwipe mission out of the area.

	The GeoJSON needs to be a flat polygon, check this and change (in geojson.io [https://geojson.io] or QGIS) if needed.

For Footprint projects:

	The GeoJSON file should contain only simple Polygons. We currently don’t support complex Multipolygon geometries (e.g. polygon with holes [https://developers.google.com/maps/documentation/javascript/examples/polygon-hole])

Once you submit, the task should appear relatively quickly in the manager dashboard. You will receive a message in Slack.
But it’s still not active and not visible to the MapSwipe app users.
You need to set the project status to active through the manager dashboard. Just navigate to the Projects page and then change the Project Status on the left filter pane to show Inactive projects. You’ll find the project you’ve just created here. Now, you can set the project status to be Active from the dropdown as shown in the screenshot below.
If the new project does not appear in the app after about 1 hour, check Slack for an error message, and see Troubleshooting section below.

[image: Project Management]

Troubleshooting

	If a project does not show up in the app or on the project dashboard, probably something went wrong with the GeoJSON file, visit the imports dashboard - hopefully it will be the last in the list and the error can be determined and fixed. Please ask on the MapSwipe slack if you cannot determine the error.

	If the project is not in the imports dashboard, then it was not successfully submitted and you may try again.

	If you encounter any error like the % is not rising anymore in the app, the number of mappers is not rising anymore in the app firebase functions might be the reason for this. Check firebase functions logs (Firebase > Functions > Logs) or reach out for help in Slack.

Becoming a project manager

If you have access to the mapswipe backend server you can grant project manager rights like this:

docker run --name mapswipe_workers_local -it pythonmapswipeworkers_mapswipe_workers bash`
mapswipe_workers --verbose user-management --email=your_email@xyz.org --manager=true
exit
docker rm mapswipe_workers_local

 Command Line Interface

Command Line Interface

The Mapswipe Backend provides a Command Line Interface(CLI) with which the users can interact with the program.
They can be used for example to create projects, which were uploaded to the manager-dashboard,
or to export statistics on the finished projects. To get a comprehensible lists of the available commands use the --help flag.

mapswipe_workers --help would get you all possible commands, while e.g. mapswipe_workers archive --help would get you additional information on how to use that command.

In our current deployment setup the commands of the MapSwipe Workers CLI are hard-coded in the Docker-Compose File.

You can run these commands also using docker-compose:

docker-compose run mapswipe_workers mapswipe_workers --help

 Use Cases

Use Cases

This document is based on the first version of MapSwipe and contains outdated information.

How to identify “good” mapping tasks for MapSwipe

MapSwipe projects can cover large areas in comparison to other mapping approaches, e.g. using the HOT Tasking Manager. Nevertheless, the level of detail of the resulting information you can expect from the resulting data will be lower than using the data from OpenStreetMap.

Here is a list of characteristics that apply to many projects we have in MapSwipe and that may also indicate how suitable your project is for MapSwipe:

	the features you want to map are relatively easy to spot and distinguish from other objects on satellite image with a resolution of around 0.3-0.5 meter.

	you are interest only in a limited number of object types, the ideal case would be 1 object type per project

	the area is large, larger than projects you usually see in the HOT Tasking Manager

	the features you want to map cover only some parts of the whole area (e.g. the built-up area is often less than 10% of the whole project area)

Building Mapping

This has been the focus for most MapSwipe projects. Buildings are relatively easy to spot, since their shape is familiar to most MapSwipe users. However, not all buildings look the same. Some have a rectangular shape, but others are round or build of clay, which makes it difficult to distinguish buildings and the ground. Sometimes also trees may look like a building.

Building mapping can be done at zoom level 18 or higher.

[image: building_example1]

 Analysis of the Mapswipe Tiles – how ‘square’ are they?

Analysis of the Mapswipe Tiles – how ‘square’ are they?

To generate VGI for humanitarian use, project areas are cut into tiles in order for users to search for buildings on aerial imagery. The Mapswipe tiles are created as described by Bing using Level of Detail 18 (task_z = 18 for Mapswipe data). The users assign a ‘Yes’, ‘No’, ‘Maybe’ or ‘Bad Imagery’ to each tile. This information is used to select on positive tiles and create bigger geometries representing a settlement layer. While these tiles look absolutely squared (e.g. in a web map or in mobile applications such as MapSwipe), they DON’T represent the same area.

The web mercator projection distorts the image in a way that objects further away from the equator will continuously appear bigger than they are. So always keep in mind: The area represented by a tile will be getting smaller the further north or south your tile is located. Table 1 shows that the area of projects further away from the equator have smaller areas and smaller side length. Furthermore, the angles will deviate further from rectangular.

	
	10836 Chad
	7605 Madagascar

	Geographical Latitude
	21 ° North
	25 ° South

	Average Tile X Length [m]
	144.9570
	138.3959

	Average Tile Y Length [m]
	144.0854
	137.6354

	Area average [m²]
	20886.2967
	19048.1169

	Area min [m²]
	20791.6519
	18921.4767

	Area max [m²]
	20949.2044
	19139.2674

	Area range [m²]
	157.5525
	217.7908

	Deviation from 90° angle
	~ 0.01171 °
	~ 0.0063 °

Table 1: Measurements for Mapswipe Tiles.

Figure 1 shows the decrease in size from south to north in project 10836 (Chad) on the northern hemisphere.

 Configuration Reference

Configuration Reference

Most of the configuration is stored in environment variables.
At the root of the GitHub repository (in the same directory as docker-compose.yml) an example file (example.env) with all possible configuration variables exists. To get started copy this file to .env (no name is required) and fill in missing variables. The Docker Compose file will access those variables when needed.

Note: If you want those variables to be accessible as Environment Variables in your current shell (Eg. Inside a Python virtual environment for development.) your need to parse the file and export the variables: export $(cat .env | xargs)

In following chapters configuration values and keys are discussed for each part of the MapSwipe Back-end.

MapSwipe Workers

All configuration values for MapSwipe Workers are stored in environment variables.

Required environment variables are:

Firebase

	FIREBASE_API_KEY

	FIREBASE_DB

	FIREBASE_TOKEN

	GOOGLE_APPLICATION_CREDENTIALS

Postgres DB

	POSTGRES_DB

	POSTGRES_HOST

	POSTGRES_PASSWORD

	POSTGRES_PORT

	POSTGRES_USER

OSMCha

	OSMCHA_API_KEY

Optional environment variables:

	SLACK_CHANNEL

	SLACK_TOKEN

	SENTRY_DSN

For satellite imagery access to at least one provider is needed. Define the API key as environment variable:

	IMAGE_BING_API_KEY

	IMAGE_MAPBOX_API_KEY

	IMAGE_MAXA_PREMUIM_API_KEY

	IMAGE_MAXAR_STANDARD_API_KEY

	IMAGE_ESRI_API_KEY

	IMAGE_ESRI_BETA_API_KEY

Notes: When deploying using docker or docker-compose POSTGRES_HOST should have the value postgres and the Service Account Key (serviceAccountKey.json) should be copied to mapswipe_workers/serviceAccountKey.json so that during the build of the image the file can by copied by Docker.

Elaboration

Firebase: MapSwipe Workers use the Firebase Python SDK and the Firebase REST API. Both require the database name (FIREBASE_DB) and the API-Key from the Firebase instance. The Firebase Python SDK does also need a Service Account Key. The path to this file is set in the GOOGLE_APPLICATION_CREDENTIALS environment variable.

Postgres: MapSwipe Workers writes data to a Postgres database and generate files for the API based data in Postgres.

OSMCha: MapSwipe Workers enriches some Projects with data from OSM changelogs which are requested from OSMCha. Create an account, you will find you api key in your profile e.g. Token 589adf125234a

Sentry (optional): MapSwipe workers use sentry to capture exceptions. You can find your project’s DSN in the “Client Keys” section of your “Project Settings” in Sentry. Check Sentry’s documentation [https://docs.sentry.io/error-reporting/configuration/?platform=python] for more information.

Slack (optional): The MapSwipe workers send messages to slack when a project has been created successfully, the project creation failed or an exception gets raised. refer to Python slackclient’s documentation [https://github.com/slackapi/python-slackclient] how to get a Slack Token.

Imagery: MapSwipe uses satellite imagery provided by Tile Map Services (TMS).
If you are not familiar with the basic concept have a look at Bing’s documentation [https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system].

Postgres

Required environment variables are (Those are the same as needed by MapSwipe Workers):

	POSTGRES_DB

	POSTGRES_HOST

	POSTGRES_PASSWORD

	POSTGRES_PORT

	POSTGRES_USER

Notes: When deploying using docker or docker-compose POSTGRES_HOST should have the value postgres.

Postgres Backup

On details of how the back-up works please refer to Postgres Backup.

Required environment variables are:

	WALG_GS_PREFIX

To gain access to Google Cloud Storage another Service Account Key is needed. Again refer to Postgres Backup on how to create this file.
The Service Account Key (serviceAccountKey.json) should be saved to postgres/serviceAccountKey.json

Manager Dashboard

Please refer to the official documentation [https://firebase.google.com/docs/web/learn-more#config-object] if you set up your own firebase.
Otherwise you can request guidance on the settings from the mapswipe team. The structure of your app.js should look like below.

Firebase

	MANAGER_DASHBOARD_FIREBASE_API_KEY

	MANAGER_DASHBOARD_FIREBASE_AUTH_DOMAIN

	MANAGER_DASHBOARD_FIREBASE_DATABASE_URL

	MANAGER_DASHBOARD_FIREBASE_PROJECT_ID

	MANAGER_DASHBOARD_FIREBASE_STORAGE_BUCKET

	MANAGER_DASHBOARD_FIREBASE_MESSAGING_SENDER_ID

	MANAGER_DASHBOARD_FIREBASE_APP_ID

Sentry

	MANAGER_DASHBOARD_SENTRY_DSN

	MANAGER_DASHBOARD_SENTRY_TRACES_SAMPLE_RATE

Community Dashboard

Django API

	COMMUNITY_DASHBOARD_GRAPHQL_CODEGEN_ENDPOINT

	COMMUNITY_DASHBOARD_GRAPHQL_ENDPOINT

Sentry

	COMMUNITY_DASHBOARD_SENTRY_DSN

	COMMUNITY_DASHBOARD_SENTRY_TRACES_SAMPLE_RATE

Elaboration

COMMUNITY_DASHBOARD_GRAPHQL_CODEGEN_ENDPOINT: Graphql endpoint of the Django API. Eg: https://api.example.com/graphql/
COMMUNITY_DASHBOARD_GRAPHQL_ENDPOINT: Same as COMMUNITY_DASHBOARD_GRAPHQL_CODEGEN_ENDPOINT

Django API

All configuration values for Django are stored in environment variables.

Required environment variables are:

Django

	DJANGO_SECRET_KEY

	DJANGO_ALLOWED_HOST

Optional environment variables:

	DJANGO_SENTRY_DSN

	DJANGO_SENTRY_SAMPLE_RATE

	DJANGO_RELEASE

	Postgres (NOTE: Database configuration are pulled from postgres configuration directly in docker-compose files.)

	DJANGO_DB_NAME

	DJANGO_DB_USER

	DJANGO_DB_PWD

	DJANGO_DB_HOST

	DJANGO_DB_PORT

Elaboration

DJANGO_SECRET_KEY: A secret key for a particular Django installation. This is used to provide cryptographic signing, and should be set to a unique, unpredictable value.
DJANGO_SENTRY_SAMPLE_RATE: Sample rate by which sentry send transaction metadata. Value should be between 0 to 1. https://docs.sentry.io/platforms/python/guides/django/configuration/sampling/

NGINX

The configuration for nginx is defined in nginx/nginx.conf.template file.

Domains

	NGINX_MAIN_DOMAIN

	NGINX_DJANGO_DOMAIN

	NGINX_MANAGER_DASHBOARD_DOMAIN

	NGINX_COMMUNITY_DASHBOARD_DOMAIN

NOTE: Make sure the used domain have valid certificates in /etc/letsencrypt/

NGINX_MAIN_DOMAIN: Domain for main mapswipe static api server.
NGINX_DJANGO_DOMAIN: Domain for django web server.
NGINX_MANAGER_DASHBOARD_DOMAIN: Domain for manager dashboard.
NGINX_COMMUNITY_DASHBOARD_DOMAIN: Domain for community dashboard.

 Installation

Installation

This document describes how to setup all the parts of the MapSwipe backend in a production environment.

Please consult the Configuration Reference for this setup as well.

	Firebase

	Postgres

	MapSwipe Workers

	API

	Manager Dashboard

	Django API

	Community Dashboard

	Lets Encrypt and NGINX as proxy

For this setup the main repository is required:

git clone https://github.com/mapswipe/python-mapswipe-workers.git
cd python-mapswipe-workers

Firebase Setup

Download a Service Account Key File for MapSwipe Workers:

	In the Firebase console, open Settings > Service Accounts.

	Click Generate New Private Key, download it and use it to set the environment variables in .env.

Configure your API Keys in Google APIs & Services

	Open Google APIs & Services > Credentials [https://console.cloud.google.com/apis/credentials]

	Create API key for MapSwipe workers:

	set name of api key to mapswipe-workers

	set Application restrictions > IP addresses > set IP addresse of mapswipe workers server

	set API restrictions > Restrict Key > Identity Toolkit API

	Create API key for Manager Dashboard:

	set name of api key to manager-dashboard

	set Application restrictions > HTTP referrers > set HTTP referrer of managers dashboard

	set API restrictions > Restrict Key > Identity Toolkit API and Cloud Functions API

	Also make sure to configure the API keys for the App side here.

Deploy Database Rules and Functions

The Firebase setup consists of two parts:

	Firebase Database Rules (firebase/database.rules.json)

	Firebase Functions (firebase/functions/)

To deploy them to the Firebase Project the Firebase Command Line Tools are required. When running the provided Docker image (firebase/Dockerfile) the database rules and the functions will be deployed. For this to work a Firebase Token is needed:

	On a PC with a browser install the Firebase Command Line Tools (https://firebase.google.com/docs/cli/ [https://firebase.google.com/docs/cli/#install_the_firebase_cli])

	Run firebase login:ci to generate a Firebase Token.

	Save the Firebase Token to .env at the root of the cloned MapSwipe Backend repository on the server: echo "FIREBASE_TOKEN=your_token" >> .env

Once the Firebase Token is set the database rules and functions will be deployed when running the firebase_deploy Docker image using docker-compose:

docker-compose up --build -d firebase_deploy

This container needs to run only as long until the firebase deploy command inside the Docker container terminates. Use docker logs firebase_deploy to find out if the command is still running.

Postgres Setup

In the postgres directory is an initdb.sql file for initializing a Postgres database.

When running Postgres using the provided Dockerfile it will setup a Postgres database using the initdb.sql file during the build.

The Postgres configuration (eg. password) has to be defined in the environment file (.env):

POSTGRES_PASSWORD=your_password

To run the Postgres Docker container:

docker-compose up -d postgres

The Postgres instance will be exposed to localhost:5432.

MapSwipe Workers

Configuration

Run MapSwipe Workers

docker-compose up -d mapswipe_workers

Manager Dashboard

The Manager Dashboard uses the Firebase JavaScript client SDK [https://firebase.google.com/docs/database/web/start] to access Firebase Database service as authenticated as MapSwipe user with project manager credentials.

	Open Google APIs & Services > Credentials [https://console.cloud.google.com/apis/credentials]

	Create API key for MapSwipe workers:

	set name of api key to mapswipe_workers_api_key

	set Application restrictions > IP addresses > set IP addresse of mapswipe workers server

	set API restrictions > Restrict Key > Identity Toolkit API

	Create API key for Manager Dashboard:

	set name of api key to manager_dashboard_api_key

	set Application restrictions > HTTP referrers > set HTTP referrer of managers dashboard (e.g. https://dev.mapswipe.org)

	set API restrictions > Restrict Key > Identity Toolkit API and Cloud Functions API

	Also make sure to configure the API keys for the App side here.

Project-id refers to the name of your Firebase project (e.g. dev-mapswipe). The firebaseConfig in mapswipe_dashboard/js/app.js should look like this now:

var firebaseConfig = {
 apiKey: "manager_dashboard_api_key",
 authDomain: "your_project_id.firebaseapp.com",
 databaseURL: "https://your_project_id.firebaseio.com",
 storageBucket: "your_project_id.appspot.com"
 };

Get Web API Key: > Settings > Project settings > General. Add the web api key to the .env file.

Make sure to set restrictions correctly:

	https://cloud.google.com/docs/authentication/api-keys#api_key_restrictions

	https://console.cloud.google.com/apis/credentials

docker-compose up -d manager_dashboard

API

Currently the API is a simple Nginx server which serves static files. Those files are generated by MapSwipe Workers and shared over a Docker volume with the API Container.

docker-compose up -d api

Django API

Currently the django API is a web server build using django which provides stats information.

docker-compose up -d django

Lets Encrypt and NGINX

To enable SSL for the API and MapSwipe Manager Dashboard use Certbot to issue standalone certificates.

Certbot

To install Certbot follow instructions on https://certbot.eff.org/lets-encrypt/ubuntubionic-other

Create certificates:

certbot certonly \
 --standalone \
 --domain dev-api.mapswipe.org \
 --domain dev-managers.mapswipe.org \
 --agree-tos \
 --email e@mail.org \
 --non-interactive

Note: Certbot systemd timer for renewal of certificate will not work for standalone certificates because the service (docker nginx) which occupies port 80 has to be stopped before renewal.

For certificate renewal a cronjob is used. This has to be run as root: sudo crontab -e

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

0 */12 * * * certbot -q renew --pre-hook "docker stop nginx" --post-hook "docker start nginx"

Nginx

NGINX serves the MapSwipe API and Manager Dashboard. If you want these point to a specific domain, make sure to set it up.

Once you got your domain name change server_name, ssl_certificate and ssl_certificate_key in the NGINX configuration file (nginx/nginx.conf)

Run NGINX:

docker-compose up -d nginx

 Debugging

Debugging

Logs - MapSwipe Workers

Where can I find logs?

	docker logs mapswipe_workers

	or

	cat mapswipe-data/mapswipe_workers.log

Logs are written to directly to the terminal (stdout). The easiest way is therefore is to run docker logs mapswipe_workers to see the logs.

Logs are also writing to file inside the Docker container (~/.local/share/mapswipe_workers/mapswipe_workers.log). The parent directory of the file is the data directory of MapSwipe Workers. This directory is mounted (as a Docker volume) locally to disk (mapswipe-data/). Logs can therefore be accessed as text file as well: cat mapswipe-data/mapswipe_workers.log

Logs - Django web server.

	docker compose logs django

	or

	cat django-data/django.log

Common Errors

Docker containers are always restarting: Take a look at the docker logs (eg. docker logs container_name). If you get an Unable to load configuration file at ./cfg/config.cfg. Exiting. due to PermissionError: [Errno 13] Permission denied: './config/configuration.cfg' error message, you probably have SELinux on your system enabled. If so you have to configure (change mount option of volumes) your docker-compose file. Please read the documentation provided by Docker regarding this configuration (https://docs.docker.com/storage/bind-mounts/ Chapter: “Configure the selinux label”).

Useful Docker Commands

	docker ps -a: list all containers and check status

	docker image ls: list all docker images

	docker exec -it mapswipe_workers bash: open shell in a running container

	docker exec -t mapswipe_workers tail -100 /var/log/mapswipe_workers/mapwipe_workers.log: show last 100 lines of the log file

	docker stats: show memory usage, CPU consumption for all running containers

	docker system prune --all: clean up any resources — images, containers, volumes, and networks — that are dangling (not associated with a container)

 Backup

Backup

For Postgres backups WAL-G [https://github.com/wal-g/wal-g] is used. “WAL-G is an archival restoration tool for Postgres”.

For more information please refer to the official docs of WAL-G [https://github.com/wal-g/wal-g] and the official docs of Postgres [https://www.postgresql.org/docs/current/continuous-archiving.html] on write ahead log (WAL). Current setup took inspiration from this blog post [https://www.fusionbox.com/blog/detail/postgresql-wal-archiving-with-wal-g-and-s3-complete-walkthrough/644/].

Backup setup

The WAL-G backup setup is integrated into the Postgres Docker image. It will do a baseline backup of the database to Google Cloud Storage every day utilizing a cron job and wal-g backup-push. After that the Postgres will push WAL (Write-Ahead Log) files to Google Cloud Storage regularly using wal-g wal-push. For exact commands please take a look at following script:

	postgres/wal-g/make_basebackup.sh

	postgres/wal-g/archive_command.sh

WAL-G is installed alongside Postgres. See the Dockerfile of Postgres (postgres/Dockerfile) for details. In the docker-compose postgres command (docker-compose.yml) archive parameter of postgres are set needed to make archives.

Configuration

To store backups in Google Cloud Storage, WAL-G requires that this variable is set: WALG_GS_PREFIX to specify where to store backups (eg. gs://x4m-test-bucket/walg-folder).
Please add this to the .env file at the root of MapSwipe Back-end (See .example-env for environment variables which have to be set)

WAL-G determines Google Cloud credentials using application-default credentials like other GCP tools. Get a Service Account Key file (serviceAccountKey.json) for your Google Cloud Storage (See Google Cloud Docs [https://cloud.google.com/iam/docs/creating-managing-service-account-keys]) and save it to postgres/serviceAccountKey.json.

Restore setup

The WAL-G restore setup is realized in a dedicated Docker image (postgres/recovery/Dockerfile). The entrypoint is the ini_recovery.sh srcipt. This script will create a new Postgres database cluster, fetch latest backup using wal-g backup-fetch and create a recovery.conf file in the new cluster. recovery.conf is used by Postgres during first start to get the restore_command. Again the exact commands are to be found in postgres/recovery/restore_command.sh. During first start Postgres will get WALs from backup server and restore the database.

Configuration

The same configuration as for the backup setup is requiered. Except the Service Account Key has to be stored at postgres/recovery/serviceAccountKey.

 Index

Index

 Diagrams

Diagrams

This document collects all diagrams associated with Mapswipe.

In the next MapSwipe version release (MapSwipe for Change Detection Analysis) those diagrams should be showing only the currently implemented structure and integrated with the docs in the appropriate places.

The Diagrams are drawn using draw.io [https://.wwww.draw.io]. You can download the diagram.xml file in the GitHub repository (docs/_static/img/) and upload it to draw.io if you want to edit it. The JSON based data structure diagrams of the Firebase Realtime Database are drwan using sample_data.json, which also can be found in the GitHub repository (docs/_static/img/) files and this tool: https://vanya.jp.net/vtree/

Deployment Diagram:

[image: Deployment Diagram]

Proposed Data Structure Project Type 1 - Firebase:

[image: Data Structure - Firebase]

Proposed Data Structure Project Type 2 - Firebase:

[image: Data Structure - Firebase]

Database Scheme - Postgres:

[image: Database Schema - Postgres]

Entity Relationship Diagram - Postgres:

[image: Entity Relationship Diagram- Postgres]

Database Schema - Analytics:

[image: Database Schema - Analytics]

 Firebase

 Then set up a Service Account Key file:

	Open Google Cloud Service Accounts [https://console.cloud.google.com/iam-admin/serviceaccounts]

	Create a new Service Account Key file:

	set name (e.g. dev-mapswipe-workers)

	add roles, (e.g. Storage Admin and Firebase Admin) or use pre-defined role instead (e.g. Custom Firebase Developer)

	Download Key as file:

	select .json and save

Firebase

Firebase is a central part of MapSwipe. In our setup we use Firebase Database, Firebase Database Rules and Firebase Functions. In the documentation we will refer to two elements:

	your_project_id: This is the name of your Firebase project (e.g. dev-mapswipe)

	your_database_name: This is the name of your Firebase database. It is very likely that this will be the same as your Firebase project name as well.)

The mapswipe_workers module uses the Firebase Python SDK [https://firebase.google.com/docs/reference/admin/python] to access Firebase Database services as administrator, you must generate a Service Account Key file in JSON format. For this we use the previously generated Service Account Key. (Check the Google APIs and Services Credentials section again if you don’t have it.) Copy the file to mapswipe_workers/config/serviceAccountKey.json.

The mapswipe_workers module further uses the Firebase Database REST API [https://firebase.google.com/docs/reference/rest/database] to access Firebase Database either as a normal user or project manager.

For both things to work you need to add your database_name in the configuration file. For the the REST API add also the previously generated mapswipe_workers api key. (Check the Google APIs & Services Credentials section again if you don’t have it.) The firebase section in mapswipe_workers/config/configuration.json should look like this now:

"firebase": {
 "database_name": "your_database_name",
 "api_key": "mapswipe_workers_api_key"
}

The manager_dashboard module uses the Firebase JavaScript client SDK [https://firebase.google.com/docs/database/web/start] to access Firebase Database service as authenticated as MapSwipe user with project manager credentials. Add the previously generated manager-dashboard api key. (Check the Google APIs & Services Credentials section again if you don’t have it.) Project-id refers to the name of your Firebase project (e.g. dev-mapswipe). The firebaseConfig in mapswipe_dashboard/js/app.js should look like this now:

var firebaseConfig = {
 apiKey: "manager_dashboard_api_key",
 authDomain: "your_project_id.firebaseapp.com",
 databaseURL: "https://your_project_id.firebaseio.com",
 storageBucket: "your_project_id.appspot.com"
 };

The firebase module uses the Firebase Command Line Interface (CLI) Tools [https://github.com/firebase/firebase-tools] to access Firebase Database Rules and Firebase Functions. You need a firebase token. Here’s how you generate it:

	On a PC with a browser install the Firebase Command Line Tools (https://firebase.google.com/docs/cli/ [https://firebase.google.com/docs/cli/#install_the_firebase_cli])

	Run firebase login:ci to generate a Firebase Token.

	Save the Firebase Token to .env at the root of the cloned MapSwipe Backend repository: echo "FIREBASE_TOKEN=your_token" >> .env

	You should have an entry for the firebase token in your .env now:

FIREBASE_TOKEN="your_token"

 Tutorials

Tutorials

For each project type there should be at least one tutorial. Tutorials are similar to actual projects. To display the tutorial we will use the same design and screens as if a user would map for real.

Deploy tutorials to Firebase Database from Docker

You can upload tutorial data to Firebase like this:

docker run --name mapswipe_workers_local -it pythonmapswipeworkers_mapswipe_workers bash`
mapswipe_workers --verbose create-tutorial --input_file=sample_data/build_area_tutorial.json
exit
docker rm mapswipe_workers_local

If you want to use a customized tutorial make sure to adjust the .json file in the sample data folder and also add the file for the tasks.

Data Perspective

Tutorials and projects have the following in common:

	both have groups with the same structure (there can also be several groups per tutorial)

	both have tasks

However, for tutorials there are some additional attributes for tasks:

	referenceAnswer: this is the expected answer

	category: this refers to what the user should learn in this task (e.g. to map a building or correctly classify clouds)

What are categories?

	for each project type we can think about several steps that the users should learn (e.g. learn how to map a building, learn what is not a building, …)

	for each project type there is a fixed number of categories

	for each category there will be 3 text caption:

	pre: will be displayed initially

	post_correct: will be displayed if expected result(s) and actual result(s) match

	post_wrong: will be displayed if expected result(s) and actual result(s) don’t match

	the text captions for the categories should be translated to all available languages

Functionality Perspective

The main interaction will be the same for projects and tutorials. However, there will be sligh differences:

Tutorials will not:

	upload results to firebase (and increase your user statistics)

Tutorials will:

	show the expected results after your first swipe or interaction

	show the next tasks after swiping again (after the expected results have been shown)

	once all tasks have been displayed you start to map for real projects

_static/img/manager_dashboard_create_screenshot.png
MapSwipe Home Prc n Heliur

Basic Project Information

Project Type

Build Area Footprint Change Detection Completeness

Selectthe type ofyour pro

Project Topic Project Region

Enter the topic of your project (50 char max). Enter name of

project Region (50 chars max)

Project Number Requesting Organisation

1 -

s this project partof a bgger campalgn with multipl projects?

fon o community is requesting tis proj

Name
[Project Top nisation]
We wil generate you pro
Visibility Look For
Public x v
Choose either pubiic or ‘hich this project should be displayed What should the users 100k or (e.g. bullings,cars reesf? (25 chars max)
Project Detalls
4
Enter the descrption fr your project. (markdown syntax i supported).
Upload Project Image (Image) Tutorial
0 Selectfile Nofile chosen Default Build Area Tutorial v

Choose which tutoralshould be used for this project, Make sure that this aigns with
what you are looking for

Verification Number

_static/img/manager_dashboard_manage_screenshot.png
@ MapSwipe Hor

Projects

Frozen Hellum Logout

Projects

Project Status
O Active

O Active (Private)
® inactive

O Inactive (Private)
O Finished

O Archived

Q search by title

test - Malawi

test

Type: Build Area

ractive ~ O fetured
+ Inactive
Adive iSLAND (1)

Active (Private)
Inactive (Private)
Finished

Archived O Featured

Test 2 Damaged Buildings - Rutendo - Haiti (1)

Type: Footprint

Inactive v O Features

Test damaged buildings - Rutendo - Haiti (1)

e Footprint

Inactive v O Features

AddNew Tutorial | | Add New Project
o%
e
201
o%

_static/img/horizontally_sliced_groups.png
0 5 10 15km

-
VN
_am—
_A—
A
y N
y N
y—————————————'N

Legend
Bl horizontally sliced groups

_static/img/length-plot.png
meter

150

100

50

20

40

Latutide

80

_static/img/osm_validation_example.png
é You are looking for:
MISSING BUILDINGS

_static/img/project.png
0 5 10 15km

Legend
[project

_static/img/manager_dashboard_screenshot.png
MapSwipe Home P

Welcome to
MapSwipe Manager Dashboard

You can set up a new mission by setting up project draft through New Project page.
You may find some of the useful stuff below.

Organisations Add New Organisation

View Organisations v

Tutorials Add New Tutorial

View Tutorials v

_static/img/mapswipe_data_model.png
Legend

[_JProject

[1Groups

[| Tasks
Results
[yes

[Imaybe

[Ibad image

_static/img/tasking_manager_geometries_example.png

_static/img/vertically_sliced_groups.png
0 5 10 15km

Legend

I vertically sliced groups

A ol

nav.xhtml

 Table of Contents

 		
 Welcome to MapSwipe Back-End’s documentation!

 		
 MapSwipe Back-End

 		
 Resources

 		
 Contributing Guidelines

 		
 Feature Branch

 		
 Style Guide

 		
 License

 		
 Authors

 		
 Acknowledgements

 		
 Overview

 		
 A typical MapSwipe workflow

 		
 Deployment Diagram

 		
 Relations

 		
 Data

 		
 Projects

 		
 Files:

 		
 Aggregated Results

 		
 Files:

 		
 HOT Tasking Manager Geometries

 		
 Files:

 		
 Users

 		
 Development Setup

 		
 Installation

 		
 Clone from GitHub

 		
 Requirements

 		
 Configuration

 		
 Database

 		
 Mapswipe-Workers Python Package

 		
 Further Information

 		
 Logging

 		
 Firebase Functions

 		
 OSM OAuth 2

 		
 Database Backup

 		
 Firebase

 		
 Postgres

 		
 Testing

 		
 Tests

 		
 Project Types and Data Model

 		
 MapSwipe’s Crowdsourcing Approach

 		
 Data Model

 		
 Project Drafts

 		
 Projects

 		
 Groups

 		
 Tasks

 		
 Results

 		
 Users

 		
 Build Area

 		
 Project Drafts

 		
 Projects

 		
 Groups

 		
 Tasks

 		
 Results

 		
 Change Detection

 		
 Project Draft

 		
 Project structure

 		
 Group structure

 		
 Task structure

 		
 Result Structure

 		
 Footprint

 		
 Project Draft

 		
 Project structure

 		
 Group structure

 		
 Task structure

 		
 Result Structure

 		
 For MapSwipe Managers

 		
 Setting up a new MapSwipe mission

 		
 Troubleshooting

 		
 Becoming a project manager

 		
 Command Line Interface

 		
 Use Cases

 		
 How to identify “good” mapping tasks for MapSwipe

 		
 Building Mapping

 		
 Landcover Mapping - e.g. Mangroves

 		
 OpenStreetMap Data Validation

 		
 Analysis of the Mapswipe Tiles – how ‘square’ are they?

 		
 Summary

 		
 Configuration Reference

 		
 MapSwipe Workers

 		
 Firebase

 		
 Postgres DB

 		
 OSMCha

 		
 Optional environment variables:

 		
 Elaboration

 		
 Postgres

 		
 Postgres Backup

 		
 Manager Dashboard

 		
 Firebase

 		
 Sentry

 		
 Community Dashboard

 		
 Django API

 		
 Sentry

 		
 Elaboration

 		
 Django API

 		
 Django

 		
 Optional environment variables:

 		
 Elaboration

 		
 NGINX

 		
 Domains

 		
 Installation

 		
 Firebase Setup

 		
 Deploy Database Rules and Functions

 		
 Postgres Setup

 		
 MapSwipe Workers

 		
 Configuration

 		
 Run MapSwipe Workers

 		
 Manager Dashboard

 		
 API

 		
 Django API

 		
 Lets Encrypt and NGINX

 		
 Certbot

 		
 Nginx

 		
 Debugging

 		
 Logs - MapSwipe Workers

 		
 Logs - Django web server.

 		
 Common Errors

 		
 Useful Docker Commands

 		
 Backup

 		
 Backup setup

 		
 Configuration

 		
 Restore setup

 		
 Configuration

_images/database_schema-analytics.png
Projects

id:int
contributors int
groupAverage :double prec
image :varchar

imporikey :varchar
isFeatured :boolean
lookFor : varchar

name : varchar

progress :int
projectDetails : varchar
state :int
verificationCount :int
curmupt-boolean
lasiCheck: imesiamp
extent: geometry

centroid : geometry.

Results

taskid : varchar

userld :varchar

projectld :int
timestam - bigint
result:int

duplicates :int

Final

Tasks

> taskid :varchar

Users.

userld :varchar
distance :int
copnributions :nt

username :varchar

projectld :int
groupid :int
‘completedCount :int

St_geomiromtext: geometry

laskid :varchar
projectid :int
completedCount :bigint
count:bigint

noCount :bigint
yesCount :bigint
maybeCaunt :bigint
badimageCount:bigint
geo - geomelry
area_in_sqm :num
perimeter_in_m :num
agreement :num

msi num

no_si:num

Stats_general

Contributions

project_totalbigint
project_finished :bigint
project inacive - bigint
project_acive :bigint
user._totalbigint
user_avg_project bigint
largest_area :num
smalest_project:int
smallest_area :num

total_km_sq_covered : num

taksld : varchar

projectld :int

completedCount :bigint

userld :varchar
groupTimestamp int

result:int

ge0 :geometry

Groups_tasks

groupid :int
projectld :int

‘completedCount :int

_images/entity_relationship_diagram-postgres.png
groups

D
current
structure

'
o
projects
f
0
results users
i
—
groups
Desired -
structure
-
tasks.
T
0.1
users O resuts

progress

imports

_images/manager_dashboard_create_screenshot.png
MapSwipe Home Prc n Heliur

Basic Project Information

Project Type

Build Area Footprint Change Detection Completeness

Selectthe type ofyour pro

Project Topic Project Region

Enter the topic of your project (50 char max). Enter name of

project Region (50 chars max)

Project Number Requesting Organisation

1 -

s this project partof a bgger campalgn with multipl projects?

fon o community is requesting tis proj

Name
[Project Top nisation]
We wil generate you pro
Visibility Look For
Public x v
Choose either pubiic or ‘hich this project should be displayed What should the users 100k or (e.g. bullings,cars reesf? (25 chars max)
Project Detalls
4
Enter the descrption fr your project. (markdown syntax i supported).
Upload Project Image (Image) Tutorial
0 Selectfile Nofile chosen Default Build Area Tutorial v

Choose which tutoralshould be used for this project, Make sure that this aigns with
what you are looking for

Verification Number

_images/database_schema-postgres.png
Users Results
user id : varchar |€————— user id: varchar Tasks
contributions :int task_id : varchar || task id:varchar Groups.
istance -doubl prcison prolect id:int aoup ig:nt b arow g
usemane :varchar result:int prolect id:int prolect id:int
imestamp :biint o json count: nteger
o json verftonCount: nt
dublicates : int completedCount :int
o json
Surent Projecis
> profect 1ot le
Imports image : varchar Progress
mort dovarchar | | groupAverage int rofect -t
o json IsFeatured :boolean contibutors nt
lookFor varchar progress it
name :varchar timestamp :bigint

progress :int

projectDetails : varchar
state int

verificationCount :nt

italics : foreign key

project_type int

info :json

archive : boolean

results tasks groups projects

‘roect id : varchar ‘roect id : varchar ‘roect id : varchar > project id : varchar
aroup id:int aroup id:int > aroup id : int importKey : varchar
task id : varchar | task ia: varchar count integer image : varchar
user id: varchar project type_specifics :sor verificationGount :int groupAverage :int

Proposed

Schema user_id :varchar completedGount :int IsFeatured :boolean
timestamp :bigint project type_specifics :sor lookFor :varchar
dublicates :int name :varchar
project type_specifics :sor progress :int

projectDetails : varchar

state :int
users verificationGount :int
L user id: varchar project_type :int
contributions :int archive -boolean
distance :double precision progress :int
usemame :varchar contributors int

project_type_specifics :sor

results tasks groups projects
‘roect id : varchar ‘roect id : varchar ‘roect id : varchar > project id : varchar
aroup id:int > aroup id : int importKey : varchar
user id:vare count :integer project type :nt
Proposed har result:int verificationGount :int image : varchar
Schema with tmestamp bigint project type_specifics :jsor completedGount :int groupAverage :int
Analyties dublicates :int geom geometry project type_specifics :sor IsFeatured :boolean
project type_specifics :sor areaznum lookFor :varchar
perimeter :num name :varchar
progress :int
projectDetals :varchar
Users Aggregated_results Statistics state it
——>{user id:varchar project id : varchar project total bigint verificationGount :int
contributions :int aroup id :int project finished bigint archive -boolean
distance :double precision task id : varchar project inacive :bigint progress :int
usemame :varchar otalGount int project actve :bigint contributors :int
oGount:Int user_total bigint project_type_specifcs :jsor
+Gount :Int user_avg_project :bigint created tmestamp
2ount:Int largest_area :num fnished : imestamp
3Gount :Int smallest_project :int geom : geomety
msiint smallest_area :num centrid - geometry
nosi < Int otal_km_sq_covered :num

_images/deployment_diagram.png
—<devicen>
Fiebase
Firebase
Funcions M A
Realtime
Database
Firebase
Auhenication
—<devicen>
i
<<device~

MapSwipe BackEnd

(<<dovice>>
Docker Deamon

s
L e
-
e T——
timger st

image source

_images/manager_dashboard_manage_screenshot.png
@ MapSwipe Hor

Projects

Frozen Hellum Logout

Projects

Project Status
O Active

O Active (Private)
® inactive

O Inactive (Private)
O Finished

O Archived

Q search by title

test - Malawi

test

Type: Build Area

ractive ~ O fetured
+ Inactive
Adive iSLAND (1)

Active (Private)
Inactive (Private)
Finished

Archived O Featured

Test 2 Damaged Buildings - Rutendo - Haiti (1)

Type: Footprint

Inactive v O Features

Test damaged buildings - Rutendo - Haiti (1)

e Footprint

Inactive v O Features

AddNew Tutorial | | Add New Project
o%
e
201
o%

_images/manager_dashboard_screenshot.png
MapSwipe Home P

Welcome to
MapSwipe Manager Dashboard

You can set up a new mission by setting up project draft through New Project page.
You may find some of the useful stuff below.

Organisations Add New Organisation

View Organisations v

Tutorials Add New Tutorial

View Tutorials v

_static/minus.png

_static/plus.png

_static/file.png

_static/img/ChangeDetection_screenshot.jpeg

_static/img/area-plot.png
Geographical Latitude [*]

80

60

40

20

5000

10000

Area [m’

15000

20000

_static/img/BuildArea_screenshot.png
76%

You are looking for:
Buildings

_static/img/data_structure-firebase-1.png
—
g

EF

_static/img/chad_area.png
Size of mapswipe tiles, Project 10836

Legend

Tiles size

20791.6519 - 20801.4990
20801.4990 - 20811.3460
20811.3460 - 20821.1930
20821.1930